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Abstract— Super resolution (SR) for real-life video sequences
is a challenging problem due to complex nature of the motion
fields. In this paper, a novel blind SR method is proposed to
improve the spatial resolution of video sequences, while the
overall point spread function of the imaging system, motion fields,
and noise statistics are unknown. To estimate the blur(s), first, a
nonuniform interpolation SR method is utilized to upsample the
frames, and then, the blur(s) is(are) estimated through a multi-
scale process. The blur estimation process is initially performed
on a few emphasized edges and gradually on more edges as
the iterations continue. Also for faster convergence, the blur is
estimated in the filter domain rather than the pixel domain. The
high-resolution frames are estimated using a cost function that
has the fidelity and regularization terms of type Huber-Markov
random field to preserve edges and fine details. The fidelity term
is adaptively weighted at each iteration using a masking operation
to suppress artifacts due to inaccurate motions. Very promising
results are obtained for real-life videos containing detailed struc-
tures, complex motions, fast-moving objects, deformable regions,
or severe brightness changes. The proposed method outperforms
the state of the art in all performed experiments through both
subjective and objective evaluations. The results are available
online at http://lyle.smu.edu/~rajand/Video_SR/.

Index Terms— Video super resolution, blur deconvolution,
blind estimation, Huber Markov random field (HMRF).

I. INTRODUCTION

ULTI-IMAGE super resolution (SR) is the process of

estimating a high resolution (HR) image by fusing a
series of low-resolution (LR) images degraded by various
artifacts such as aliasing, blurring, and noise. Video super
resolution, by contrast, is the process of estimating a HR
video from one or multiple LR videos in order to increase
the spatial and/or temporal resolution(s). The spatial resolution
of an imaging system depends on the spatial density of the
detector (sensor) array and the point spread function (PSF) of
the induced detector blur. The temporal resolution, on the other
hand, is influenced by the frame rate and exposure time of the
camera [1], [2]. Spatial aliasing appears in images or video
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Fig. 1. A sliding window of size M 4+ N + 1 is defined around each
LR frame g;. The corresponding HR frame f; is reconstructed using the
SR operation by fusing the LR frames inside the window. Frames near the
two sides of the video sequence may have shorter lengths.

frames when the cut-off frequency of the detector is lower than
that of the lens. Temporal aliasing arises in video sequences
when the frame rate of the camera is not high enough to
capture high frequencies caused by fast moving objects. The
blur in the captured images and videos is the overall effect
of different factors such as defocus, motion blur, optical blur,
and detector’s blur resulting from light integration within the
active area of each detector in the array. The references [3]-[5]
provide overviews of different SR approaches.

One way to increase the resolution of a video is by over-
laying a sliding window upon each frame and combining all
frames falling inside the window to build the corresponding
HR frame (Fig. 1) [6]. Then the window slides to the location
of the other frames and the process repeats. For this system
to work, usually a local registration method (such as optical
flow, block-based, pel-recursive, or Bayesian [7]) is required
to accurately estimate the displacement vector of each pixel
or block within the frames. However, local registration may
not be reliable in some cases, especially when there are com-
plex dynamic changes (e.g. complex 3D motions), nonrigid
deformations (e.g. flowing water, flickering fire), or changes
in illumination [8].

Another class of single-video SR techniques is the one
known as learning-based, patch-based or example-based video
SR [9], [10]. The basic idea is that small space-time patches
within a video are repeated many times inside the same video
or other videos, at multiple spatio-temporal scales. Therefore,
by replacing LR patches in the input video with equivalent
HR patches from internal/external sources, the resolution can
be improved. The major advantage of patch-based image/video
SR methods is that motion estimation and object segmentation
are not required. However, techniques of this group often have
high computational complexity and most of them need offline
database training. Furthermore, it is necessary that LR patches
are generated from HR patches by a known PSF.
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Most works on the image and video SR are non-blind,
i.e. they do not consider blur identification during the SR
reconstruction. These methods assume that the PSFs are either
known a priori or negligible, both of which are simplistic
assumptions for realistic applications. For images, there has
been a significant amount of publications on blind deconvolu-
tion, e.g. [11]-[18], and a few on blind SR, e.g. [2], [19].
However, to the best of our knowledge, there are only
two independent works on blind SR for videos, which are
discussed next.

In [20] a method is proposed which uses a total
variation (TV) prior for frames and a combination of quadratic
and TV priors for blurs. The motion is estimated globally
either through a phase correlation method or by using an
8-parameter perspective (homography) model. Pixels that are
detected to have inaccurate motion parameters are filtered
out from the reconstruction by applying a masking operation.
A limitation of the work in [20] is that since motion is
estimated globally, all regions having local motions need to
be masked out. Therefore, the reconstructed video would be
of low quality for all locally-moving objects in the scene which
could be the most prominent regions to reconstruct. Moreover,
results are only presented for PSFs with small spatial support.

In [21] and [22] a Bayesian approach is proposed for
simultaneously estimating the HR frames, motion, blur and
noise parameter. The regularization terms for all unknowns
are of type /1 norm. An estimated noise parameter is used
to update the weight of the fidelity term at each iteration of
the optimization procedure. The noise level is updated at each
iteration, but assumed to be identical for all pixels. The blur
kernel is assumed to be separable (4 = hy * hy) and results
are only provided with Gaussian blurs. Promising results are
shown for 4x upscaling of real-life videos.

In [2] we proposed a method for blind deconvolution and
super resolution of still images. Similar to most literature on
SR, we assumed the motion fields between the input images to
be global and translational. In this paper, we extend [2] to the
case of video sequences with complex motion fields. Errors in
the estimated motions make the frame and blur reconstructions
more challenging, so a careful estimation process is required
to achieve accurate results.

For blur estimation, the input video is first upsampled
(in case of SR) using a nonuniform interpolation (NUI) SR
method, then an iterative procedure is applied using the
following considerations: 1) during the initial iterations, the
blur is estimated exclusively using a few emphasized edges
while weak structures are smoothed out, 2) the number of
contributing edges gradually increases as iterations proceed,
3) structures finer than the blur support are omitted from
estimation, 4) the estimation is done in the filter domain rather
than pixel domain, and finally 5) the estimation is performed
at multiple scales to avoid getting trapped in local minima.

The cost function used for frame debluring during the blur
estimation process has fidelity and regularization terms both
of type Huber-Markov Random Field (HMRF). A fidelity term
of this type diminishes outliers caused by inaccurate motion
estimation and preserve edges. By contrast, a HMRF prior
exploits the piecewise smoothness nature of the HR frames
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to suppress noise while preserving the edges. Unlike in [2],
we discard the output of frame debluring process after the
blur estimation is accomplished and perform a non-blind SR
reconstruction to obtain the final estimates of the video frames.
To improve the performance of this final frame estimation, the
fidelity term is weighted adaptively at each iteration pixel by
pixel. We prove the performance of our proposed method with
different experiments and comparisons with the state of the art
methods.

We assume that noise is additive white Gaussian with simi-
lar statistics for all frames and color channels. The blurs in the
input LR video are space-invariant (SI) (identical for all pixels
within the frames), spatial (no temporal extension), equal for
all color channels (by ignoring the chromatic aberration of the
lens), and either identical or with gradual variations over time.
However, no prior knowledge about the type and size of the
PSF is required.

In summary, the major differences of this work com-
pared to our previous one [2] are as follows: 1) processing
videos with arbitrary local motions rather than images with
global and translational motion differences, 2) discussions
on YCbCr/RGB color spaces and sequential/central motion
estimations, 3) adding a final non-blind frame reconstruction
after blur estimation, 4) removing structures finer than the blur
support during motion estimation, 5) using a fidelity term of
type HMREF rather than quadratic for frame reconstruction to
improve the performance, and 6) using a masking operation
during frame reconstruction to suppress artifacts.

The usual way to model motion blur in video sequences
is to define it as a 2D spatial PSF. Using this model, the
PSF would be space-variant (SV) when the scene contains
objects that move fast during the exposure time of the camera.
To reconstruct in such a case, segmentation techniques are
required to separate these objects from the rest of the scene,
estimate their motions, deblur them, and then place them back
to the scene in a way that the reconstructed frames seem
consistent and artifact-free. This process may be difficult or
even impossible when the motion blur is so severe that the
shape of the objects is distorted. However, motion blur has
a temporal nature [23], [24], so by separating this blur from
other spatial blurring sources and modeling it as a rectangular
temporal PSF with a length equivalent to the exposure time,
the overall 3D spatio-temporal PSF would be SI (if spatial
blurs are all SI). In this paper, we assume that either the motion
blur is global, or the camera’s exposure time is high enough
so that no local motion blur appears in the captured videos.

This paper is organized as follows: Section II discusses the
SR observation (forward) model, different color spaces for SR
processing, and two general approaches for motion estimation.
The blur estimation procedure is introduced in Section III.
A non-blind SR process to estimate the final HR frames is
discussed in Section IV. Experimental results are presented in
Section V, and finally Section VI concludes the paper.

II. MODEL DEFINITION
A. Observation Model

As shown in Fig. 1, a sliding window (temporal) of length
M + N + 1 (with M frames backward and N frames forward)
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is overlaid around each LR frame g of size N§ x Ny x C,
and all LR frames inside the window are combined through
the SR process to generate the HR reference frame f; of size
N[ X Nyf x C. Here, Ny and Ny are frame dimensions in
two spatial directions and C is the number of color channels.
The linear forward imaging model that illustrates the process
of generating a LR frame g; inside the window from the HR
frame fj is given by:

gi (xysypie) = [mui (fulx, y10) xhx, »)],
+nii (xy,y5¢), e=1,...,C,
k=1,...,P, i=k—M,....,k+N (1)

where P is the total number of frames, (x;,y,) and (x, y)
indicate the pixel coordinates in LR and HR image planes
respectively, L is the downsampling factor or SR upscaling
ratio (so that Nxf = LN¢ and Nyf = LN‘yg.'), and x is the
two-dimensional convolution operator. According to this
model, the HR frame f; is warped with the warping func-
tion my ;, blurred by the overall system PSF 4, downsampled
by factor L, and finally corrupted by the additive noise ny ;.

It is more convenient to express this linear process in the
vector-matrix notion:

g; = DHMy ;f; + n; 2)

In (2) f; is the kth HR frame in lexicographical notation
indicating a vector of size Nxf Nyf C x 1, matrices My ; and H
are the motion (warping) and convolution operators of size
N{N]C x N/N/cC, D is the downsampling matrix of size
NfN‘yg.'C X N,{N{C, and g; and n; are vectors of the ith LR
frame and noise respectively, both of size N{ NyC x 1. The
matrix My ; registers (or motion compensates) the reference
frame f; to match the frame f;. As a result, My, is an
identity (unit) matrix since no motion compensation is required
between a HR frame and its coincident LR frame. For a blur
deconvolution (BD) problem (i.e. L = 1), D is the identity
matrix and so the input and output videos are of the same
size. Hence BD can be considered as a special case of SR.
The objective in SR and BD is to estimate the HR frames fj
and the blur H given the LR frames g; while the motion My ;
and the noise n; are unknown as well.

B. Color Space

The human visual system (HVS) is less sensitive to chromi-
nance (color) than to luminance (light intensity). In the RGB
(red, green, blue) color space, the three color components have
equal importance and so all are usually stored or processed
at the same resolution. But a more efficient way to take the
HVS perception into account is by separating the luminance
from the color information and representing luma with higher
resolution than chroma [25]. A popular way to achieve this
separation is to use the YCbCr color space where Y is
the luma component (computed as a weighted average of
R, G, and B) and Cb and Cr are the blue-difference and
red-difference chroma components. The YUV video format
is commonly used by video processing algorithms to describe
video sequences encoded using YCbCr.
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Fig. 2. Central motion (blue) versus sequential motion (red).

In our implementation, video sequences can be processed
in either RGB or YUV formats. In the former case, SR is
used to increase the resolution of all R, G, and B channels.
However in the latter one, only the Y channel is processed
by SR for faster computation while the Cb and Cr channels
are simply upscaled to the resolution of the super-resolved
Y channel using a single-frame upsampling method such as
bilinear or bicubic interpolation. The obtained results related
to these two cases are comparable using a subjective quality
assessment.

C. Motion Estimation

Accurate motion estimation (registration) with subpixel pre-
cision is crucial for video SR to achieve a good performance.
Two different approaches can be considered for registration in
video SR: central and sequential (Fig. 2). In the former, motion
is directly computed between each reference frame and all LR
frames inside its sliding window (Fig. 1). By contrast, in the
latter, each frame is registered against its previous frame; then
to use with SR, sequential motion fields must be converted to
central fields for registration as follows: if §; = [Sx;, Sy;] is
the sequential motion field for the ith frame (w.r.t. the (i —1)th
frame), then My,; = [Mxk,i’ M,,,]. the central motion field
for the ith frame when the central frame is the kth frame is
obtained as:

k

M = — z Sy = —=Sip1+Mgit1, k—M<i<k
n=i+1

M= 1

j
> Sy= Sj+Mij 1, k<j<k+N (3
n=k+1

where I is the identity matrix.

With the sequential approach in SR, each frame needs to be
registered only against the previous frame, whereas with the
central approach each frame is registered against all neighbor-
ing frames within its reconstruction window. Therefore, the
computational complexity and the storage size of the motion
fields in the central approach is higher than that of using the
sequential approach.

The lower storage size of the motion fields in the sequential
approach is important in applications where the ground-truth
video is available (e.g. when the video to be transmitted is
downsampled intentionally to cope with the bandwidth limi-
tations of the communication channel). In this situation, the
sequential motion fields estimated from the original video can
be used by a SR processing unit at the receiver side to improve
the SR performance and also reduce the computational cost
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(specially in real-time applications). To transmit the motion
fields as metadata, they can be either embedded into the
bitstream of the encoded downsampled video (e.g. via the SEI'
message of AVC? or HEVC? video compression standards) or
sent out separately over the channel along with the video.

Contrary to the sequential approach that should be com-
puted between successive frames of the same resolution
(e.g. between bicubically upsampled successive LR frames),
with the central approach a reference HR frame f; can be
directly registered against its LR neighboring frame g;, as
performed in [21] and [22]. This method may result in a more
accurate estimation for the central approach, although at the
cost of more computational complexity for each registration.

With both sequential and central approach, the motion
fields can be reestimated after several iterations of the blur
estimation procedure (Section III) to refine the accuracy of
motion estimates.

In our work, we use the sequential approach to estimate
the motion fields between the successive frames by the use of
dense optical flow method described in [26].

III. BLUR ESTIMATION

In a multi-channel BD problem, the blurs could be estimated
accurately along with the HR images [27]. However in a blind
SR problem with a possibly different blur for each frame,
some ambiguity in the blur estimation is inevitable due to
the downsampling operation [19]. By contrast, in a blind
SR problem in which all blurs are supposed to be identical
or have gradual changes over time, such an ambiguity can be
avoided [2]. Moreover, as discussed in Section III-A, the
assumption of identical (or gradually changing) blurs makes
it possible to separate the registration and upsampling pro-
cedures from the deblurring process which significantly
decreases the blur estimation complexity.

In Section III-A, the NUI method to reconstruct the upsam-
pled frame is explained. This upsampled yet-blurry frame
is used to estimate the PSF(s) and the deblurred frames
through an iterative alternative minimization (AM) process.
The blur and frame estimation procedures are discussed in
Sections III-B and III-C, respectively. The estimated frames
are used only for the deblurring process and so omitted
thereafter. Finally, the overall AM optimization process is
described in Section III-D.

A. Frame Upsampling

In [2] we discuss the situations in which the warping and
blurring operations in (2) are commutable. Although for videos
with arbitrary local motions this commutability does not hold
exactly for all pixels, however we assume here that this is
approximately satisfied. The ultimate appropriateness of the
approximation is validated by the eventual performance of
the algorithm that is derived based on this model. With this
assumption, (2) can be rewritten as:

g, = DMy ;Hf; +n; = DMy ;z; +n; 4

1Supplemental enhancement information.
2 Advanced Video Coding.
3High Efficiency Video Coding.
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where z; = Hf} is the upsampled but still blurry frame.
Equation (4) suggests that we can first construct the upsampled
frames z; using an appropriate fusion method and then apply
a deblurring method to z; to estimate f; and h.

If noise characteristics are also the same for all
frames, an appropriate way to estimate z; is using the
NUI method [3]-[5]. In NUI, the pixels of all LR frames
are projected on to the HR image grid according to their
motion fields, and then the intensities of the true locations on
the grid are computed via interpolation [2]. Our experiments
show that using NUI for upsampling the frames leads to better
estimates of f and h (Sections III-B and III-C) compared to
when z; is estimated iteratively from the LR frames g using a
MAP (Maximum A Posteriori) or ML (Maximum Likelihood)
method such as [29] and [30].

B. Frame Deblurring

After upsampling the frames, we use the following cost
function, J, to estimate the HR frames f; having an estimate
of the blur h (or H):

4
J@) = llp | =zl + 4" D> o (Vit)],  ©®
j=1
where ||-||; denotes the /; norm (defined for a sample vector x
with elements x; as [|x]| = > ; |x;| ), A" is the regularization
coefficient, p(-) is the vector Huber function, ||p(-)||; is called
the Huber norm, and V; (i = 1,...,4) are the gradient
operators in 0°, 45°, 90° and 135° spatial directions [2]. The
first term in (5) is called the fidelity term which is the Huber-
norm of error between the observed and simulated LR frames.
While in most works the l,-norm is used for the fidelity
term, we use the robust Huber norm to better suppress the
outliers resulting from inaccurate registration. The next two
terms in (5) are the regularization terms which apply spatio-
temporal smoothness to the HR video frames while preserving
the edges.

Each element of the vector function p(-) is the Huber

function defined as:

2 .
X if x| <T
_ 6
px) [2T|x|—T2 if |x| > T, ©

The Huber function p(x) is a convex function that has a
quadratic form for values less than or equal to a threshold T
and a linear growth for values greater than 7. The Gibbs PDF
of the Huber function is heavier in the tails than a Gaussian.
Consequently, edges in the frames are less penalized with this
prior than with a Gaussian (quadratic) prior.

To minimize the cost function in (5), we use the conjugate
gradient (CG) iterative method [30] because of its simplicity
and efficiency. Compared to some other iterative methods such
as Gauss-Seidel (GS) or SOR that need explicit derivation of
matrix A when solving a linear equation Ax = b, CG can
decompose the matrix A to concatenation of filtering and
weighting operations. However, CG can only be used with
linear equation sets, whereas the cost function in (5) is non-
quadratic and so its derivative is nonlinear. To overcome this
limitation, we use lagged diffusivity fixed-point (FP) iterative
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method [31] to lag the diffusive term by one iteration [15].
Using this method for a sample vector x, at the nth iteration
the non-quadratic Huber-norm ||p(x")||; is replaced by the
following quadratic form:

[eGely = Ve =[x ™
where V" is the following diagonal matrix:

anl éT

V" = dia .
g T/x"~! x*lsT

@)

In (8) the dots above the division and comparison operators
indicate element-wise operations. Applying the FP method
to (5) and setting the derivative of the cost function with
respect to fi to zero results in the following linear equation
set:

4
H'TV'H' + "> VIwW!v, =0 Vg, )
j=I
where:
V' = diag (,o(Hf,g’—1 - zk)),
. -1
W’ = diag (p(ij,Z’ ))

We discuss how to update the regularization parameter A" at
each iteration in Section III-D.

(10)

C. Blur Estimation

Within an image or video frame, non-edge regions and weak
structures are not appropriate for blur estimation. Hence, more
accurate results would be obtained if the estimation is not
performed in such regions. For this reason, in [11] and [33]
the user should first manually select a region with rich edge
structure, whereas in [2], [13], [14], and [34] the most salient
edges are automatically chosen. Moreover, sharpening salient
edges would also improve the accuracy of blur estimation. The
authors of [34] leveraged these two strategies by preprocessing
blurred images with the shock filtering method proposed
in [35]. Shock filtering is an edge preserving smoothing
operation by which soft edges gradually approach step edges
within a few iterations while non-edge regions are smoothed.
Since shock filtering is sensitive to noise, sometimes a pre-
filtering operation is applied to first suppress noise. For
example, in [13] bilateral filtering (proposed by [36]) is used
and in [14] and [34] a lowpass Gaussian filtering is utilized
before shock filtering. A similar concept for the blur estimation
is exploited in [37] in which the image is first sharpened by
redistributing the pixels along the edge profiles in such a way
that antialiased step edges are produced. Having the sharpened
image and the blurry input image, the blur is then estimated
using a maximum a posteriori (MAP) framework.

In our work, we employ the edge-preserving smoothing
method of [40] in which the number of surviving edges
after smoothing is globally controlled by the regularization
coefficient. This feature is helpful when one desires to limit
the number of salient edges at each iteration. This smoothing
method aims to keep an intended number of non-zero gradients
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Algorithm 1 Blur Estimation Procedure

Require: g1, ..., 8p, Amin, Ymin and initials h%, A9, 40, g0 TP T

1: Setn:=0 % AM loop iteration number
2: S := # of Scales
’4;.

4: Use luma or one color channel of g1, ..., gp;
5: for k:=1 to P; do % Loop on P; reference frames

6:
7: if L > 1 then % For SR reconstruction
8: zp = NUK(gk—01s o 8K+ N)
9: else % For BD reconstruction
10: Z, = 8k
11: end if
12: fé“ =z
13:
14: % HR frame and blur estimation
15: for s:=1to S do % Multi-scale approach
16: Rescale zy, f]' and h™
17:
18: % AM loop iteration
19: while “AM stopping criterion” is not satisfied do
20: n=n+1
21:
22: % Updating procedure for f
23: Compute V™ and W;L using (10)
24: Update \™
25: while £ does not satisfy “CG stopping criterion” do
26: £}’ := CG iteration for system in (9); starting at f;kl
27: end while
28: Apply constraints on f;?
29:
30: % Updating procedure for h”
31: Update v, 8", T}* and T3}
32: Compute the smoothed frame f'}; from (11)
33: Compute V{7 from (15)
34: Edge tapping of V"]
35: Compute hy (z,y) from (17)
36: Apply constraints on h™
37:
38: end while
39: end for
40: end for

Algorithm 2 Final Frame Estimation Procedure
Require: gi,...,gp and A
I: Setn:=0
2: for k:=1to P do

% FP loop iteration number
% Loop on P reference frames

3: Estimate sequential motion fields S1, ..., Sp

4: Compute central motion fields My, ..., M using (??)

S: Estimate the blur h using Algorithm 1

6:

7: % Estimate HR frames using FP loops

8: while “FP stopping criterion” is not satisfied do

9: n=n+1

10: Compute OZJ. using (22)

11: Compute V™ and W7 using (21)

12: while " does not satisfy “CG stopping criterion” do
13: f;' := CG iteration for system in (20); starting at f;’ -1
14: end while

15: Apply constraints on

16:

17: end while

18: end for

through o gradient minimization using the following cost
function:

TEF) = 188 =85+ 8" (19 o+ [V8]l ). an)

where f’} is the output of the edge-preserving smoothing
algorithm and the /o norm is defined as x|l = # (i|x; # 0).
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Fig. 3. Reconstruction result for the Ciry video sequence (please zoom into the figure on screen; see the videos at http://lyle.smu.edu/~rajand/Video_SR/).
(a) Ground-truth frame; (b) LR frame by applying a Gaussian PSF with ¢ = 1.2 having size of 15 x 15, downsampling ratio of 2, and Gaussian noise with
SNR of 30dB, then upsampled to the original resolution using Bicubic; (c) Original blur; (d) Smoothed frame; (e) Negative of gradient magnitude of (d);
(f) Salient edges not narrower than the kernel support; (g) Result of 3D-ISKR [38] deblurred by [39] with PSNR of 28.9d B (after border removal); (h) Result
of our proposed method with PSNR of 32.4 dB; (i) Estimated blur with NMSE of 0.1.

Unlike shock filtering, this smoothing method does not need
pre-filtering of noise.

Though sufficient edge pixels are required for accurate blur
estimation, it is shown in [14] that structures with scales
smaller than the PSF support could harm blur estimation.
Inspired by that work, we define R} in (12) to measure the
usefulness of each pixel for blur estimation:

; (12)

where A and B are the convolution operators for the spatial
filters a and b, respectively, as defined below:

L = |ABf'}

1 - 1
(13)

2
b=V, +V,= [_1 (14)

-1
/]

In (13) and (14), a is the all-ones filter of size 11 x 11
and b is the sum-of-gradients filter. According to (12)-(14),
to compute RY, the sum of gradient components of f} is
computed first, then at each pixel it is summed up with
the values of all neighboring pixels, and finally its absolute
value is obtained. For pixels on narrow structures, the sum of
gradient values cancels out each other. Therefore, R} usually
has a small value at the location of narrow edges and smooth
regions. Then f'] is refined by only retaining strong and
non-spike edges:

VE'p if [VER| ST and R} ST}

/1
Vf k = .
0 otherwise,

15)
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Fig. 4. Experimental results for the Mobile video sequence (please zoom into the figure on screen; see the videos at http://lyle.smu.edu/~rajand/Video_SR/).
(a) Ground-truth video frame. (b) One LR frame generated by applying a 5 x 5 out-of-focus blur having size of 15 x 15, spatial downsampling of 2, and
Gaussian noise with SNR of 30d B, then upsampled to the original resolution using Bicubic; (c) Original blur; (d) Reconstruction result of 3D-ISKR [38]
deblurred by [39] with PSNR of 20.8dB; (e) Reconstruction result of our proposed method with PSNR of 22.7dB; (f) The estimated PSF with NMSE

of 0.15.

where T|" and T, are threshold parameters which decrease at
each iteration.

In our work, the blur is estimated from the gradients of
z; and f”) instead of their pixel values since estimation in
the filter domain converges faster than the pixel domain. The
reason for faster convergence is that in a linear equation set
Ah = b (derived from a quadratic cost function defined for h),
matrix A would be better conditioned when the gradients of
images are used [13].

To avoid ringing artifact, we apply the MATLAB function
edgetaper() to VI”}. Then we estimate each blur hy using the
cost function J (h) below:

Py
J() =D | Vax — VE'ih|; + 5" VA3,
k=1

(16)

where P; < M + N and F” is the convolution matrix of f”.
Since J(h) in (16) is quadratic, it can be easily minimized by
pixel-wise division in the frequency domain [41] as:

hi(x, y)

P 2
= 7 A [FEIXFGD) * (FE*F )]

k=1 i=1

I [lF@svapf +miFenr]) ) an

where V;(i = 1,2) is Vy or V,, F(-) and F~1(-) are FFT
and inverse-FFT operations, and (-) is the complex conjugate
operator. We then apply the following constraints to the
estimated PSF: its negative values are set to zero, then the PSF
is normalized to the range [0, 1], and centered in its support
window.

D. Overall Optimization for Blur Estimation

The overall optimization procedure for estimating the PSF
is shown in Algorithm 1. The HR frames and the PSF
are sequentially updated within the AM iterations. We use
a multi-scale approach to avoid trapping in local minima.
The regularization coefficients A" in (9) and p” in (17)
decrease at each AM (alternating minimization) iteration
up to some minimum values A,;, and y,;,, respectively
(see [2] for a discussion). The variation of these coefficients is
given by:

ii’l

n—1
max (rxl , imin),
n

y" = max (ry"_l, ymin) (18)
where r is a scalar less than 1. Also the values of " in (11)
and 7' and T;' in (15) fall at each AM iteration which
increases the number of contributing pixels to blur estimation
as the optimization proceeds.
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Fig. 5. Experimental results for the Mobile video sequence (please zoom into the figure on screen; see the videos at http://lyle.smu.edu/~rajand/Video_SR/).
(a) Ground-truth video frame. (b) One LR frame generated by applying a 9 x 9 motion blur with size of 15 x 15, spatial downsampling of 2, and Gaussian
noise with SNR of 30dB, then upsampled to the original resolution using Bicubic; (c) Original blur; (d) The reconstruction result of 3D-ISKR [38]
deblurred by [39] with PSNR of 31dB; (e) The reconstruction result of our proposed method with PSNR of 32.2dB; (f) The estimated PSF with

NMSE of 0.015.

IV. FINAL HR FRAME ESTIMATION

After the PSF estimation is completed, the final HR frames
are reconstructed through minimizing the following cost
function:

P [ kN
J (..., fp) = Z z o (Ox; (DHMy ifx —gi)) |,
k=1 \ i=k—M

19)

£ 3 la (7)1,

where Oy; is a diagonal weighting matrix that assigns less
weights to the outliers. Minimizing this cost function with
respect to fy yields:

k+N 4
> M H'D"O} ,V'DHM;,; + 1 > VIW'V; |
i=k—M j=1

=M; H'D'0} ;V'g; (20)
where:
V" = diag (p(DHMk,ifI?_l - gi))’

W = diag (p(V R )) Q1)

and the m-th diagonal element of Oy ; is computed according
to:

) IR, (p@EM, £ — )|

202

ok,ilm] =exp (22)

where in (22) R,, is a patch operator which extracts a patch
of size ¢ x g centered at the m-th pixel of £y ;.
The final frame estimation procedure is demonstrated
in Algorithm 2.
V. EXPERIMENTAL RESULTS

In this section, the performance of our method is evaluated
and compared with the state-of-the-art video SR methods
3D-ISKR* [38] and Fust Upsampler [42] which are available
for public evaluation, and also with the commercial software
Video Enhancer [43]. Among these three, we only display the
results from 3D-ISKR [38]. This non-blind SR method does
not include a debluring step, so we post process its outputs
with the debluring method of [39]. Different parameters for
debluring were tried out in each experiment to get the best pos-
sible outcomes from 3D-ISKR. Furthermore, since 3D-ISKR
implementation does not estimate pixels near frame bound-
aries, we remove the boundaries from the reconstructed frame
before an objective evaluation. As the outputs of Fast Upsam-
pler and Video Enhancer have always a small global misalign-
ment with the ground-truth frames, we use Keren method [44]

terative Steering Kernel Regression.
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(d

Fig. 6. Experimental results for some popular HD (1080p) video sequences with complicated motions; the frames are cropped for better visibility (please
zoom into the figure on screen; see the videos at http://lyle.smu.edu/~rajand/Video_SR/).The SR upsampling ratio and temporal window size are 2 and 5,
respectively. (a) BQ Terrace. (b) Crowd Run. (c) Old Town Cross. (d) Ducks Take Off.

to estimate and compensate the global misalignments. The
reconstructed videos of our proposed method are available
at http://lyle.smu.edu/~rajand/Video_SR/.

To measure the accuracy of our proposed blind method
for different blur types, we synthetically generate LR video
sequences from four popular videos commonly used in
video processing experiments: City, Mobile, Foreman, and
Bus. All these videos have 4:2:0 chroma subsampling for-
mat which means the chrominance channels have half of
the horizontal and vertical resolutions of the luminance
channel [25]. The PSFs in the experiments are generated using
the MATLAB function fspecial(). Also we demonstrate the
results of upscaling some other popular videos to the FHD’
or 1080p (1920 x 1080 progressive) resolution. Furthermore, to
see the performance for an actual video (i.e. not downsampled
by our method), we use Highway video sequence to upscale
it from CIF (352 x 288) to 4CIF (704 x 576) resolution.

For objective evaluation of the frame reconstruction perfor-
mance of the proposed method, we use peak signal-to-noise
ratio (PSNR) which is defined for the pixel intensity range of
[0, 255] as:

(23)

. 2552NI NS €
PSNR(f) = 101log,, (7y ,
If — £

where f and fl, are the ground-truth and reconstructed frames,
respectively. Also the accuracy of blur estimation is evaluated

SFull High Definition.

by normalized mean square error (NMSE) defined as:

|h — hy?

NMSE(h) = I

(24)

where h and hl, are the original and estimated blurs, respec-
tively. The goal is to obtain high frame-PSNR and low
PSF-NMSE values.

For the first experiment, the City video sequence (one frame
of which is shown in Fig. 3(a)) in 4CIF resolution is used.
It contains many structures at different scales, some of which
are smaller than the support of applied blur. This sequence
is blurred by applying a Gaussian PSF of size 15 x 15
with the standard deviation of 1.2, downsampled by a factor
of 2, and corrupted by Gaussian noise with SNR of 30dB.
The Bicubically-upsampled LR frame and the applied PSF
are shown in Figs. 3(b) and (c), respectively. The size of
SR temporal window is 5 (with 2 frames forward and 2 frames
backward). To estimate the blur(s), the frames are first upsam-
pled using the NUI method, then the luma channel of each
frame is smoothed out (Fig. 3(d)), its gradient magnitude is
calculated (Fig. 3(e)), and its salient edges not belonging to
structures finer than the kernel support are extracted (Fig. 3(f)).
The reconstructed frame using 3D-ISKR [38] deblurred by [39]
is shown in Fig. 3(g) with PSNR of 28.9dB (after border
removal). The estimated HR frame and PSF using our
method are shown in Figs. 3(h) and (i) with frame-PSNR of
32.4d B and PSF-NMSE of 0.01. Both subjective and object
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(a)

Fig. 7.
reduced. Please see the video at http://lyle.smu.edu/~rajand/Video_SR/.

TABLE I

PSNR COMPARISON BETWEEN THE PROPOSED METHOD
AND THE STATE OF THE ART

SR Methods City  Mobile  Foreman Bus
Proposed 35.7 26.6 355 28.7
3D-ISKR [39] & Debluring [46] 29.1 225 345 error
Video Enhancer [44] 304 228 34.1 26.2
Fast Upsampler [43] 29.6 22.5 34.7 26.1
Bicubic 28.1 21.1 32.6 24.6

comparisons confirm superiority of the proposed method over
3D-ISKR.

For the second experiment, the Mobile sequence in CIF res-
olution is chosen (Fig. 4(a)). This sequence is blurred by a 5x5
out-of focus PSF with size of 15 x 15, downsampled by apply-
ing a SR factor of 2 and contaminated by additive Gaussian
noise with SNR of 40dB. One Bicubically-upsampled LR
frame and the original PSF are shown in Figs. 4(b) and (c),
respectively. To reconstruct each HR frame, we use a window
of length 5. Fig. 4(d) shows the reconstruction result of
3D-ISKR [38] deblurred by [39] with PSNR of 21.2dB.
Also, Figs. 4(e) and (f) demonstrate the estimated frame and
PSF using our method with frame-PSNR of 22.7dB and
PSF-NMSE of 0.015.

As the third experiment, the Foreman video sequence
(Fig. 5(a)) is blurred with a 45-degree motion blur of size
15 x 15 with the support size of 9 x 9, downsampled by
a SR factor of 2, and contaminated by 30 dB noise. One
Bicubically-upsampled LR frame and the PSF are presented
in Figs. 5(b) and (c), respectively. The reconstruction result
of [38] is demonstrated in Fig. 5(d) with PSNR of 32d B. The
reconstructed image and the estimated PSF obtained by our
proposed method are shown in Figs. 5(e) and (f), respectively
with PSNR of 33.1d B and NMSE of 0.08.

Table I summarizes the PSNR values from our method
compared to those from 3D-ISKR [38] (deblurred by [45]),
Video Enhancer [43], Fast Upsampler [42], and Bicubic for
different video sequences. In all experiments, the proposed
method outperforms other methods with significant PSNR
differences.

(b)

(a) One frame of Highway video sequence; (b) The result of proposed method. The resolution is improved (e.g. see the green sign) and the noise is

Fig. 6 demonstrates the performance of our SR method
versus Bicubic for some popular 1080p video sequences
having complicated motions. The resolution improvement is
clearly observable in all cases. The masking operation has
successfully suppressed motion artifacts in occluded regions
(e.g. around the runners) and deformable area (e.g. torch flame,
stream of water).

Now we evaluate the proposed method using a real-life low
quality and noisy video sequence. Fig. (a) displays one frame
of the Highway sequence in CIF resolution. This is a fast
moving scene and so is challenging for SR processing. The
resulting 4CIF video using our proposed method is shown
in (b). The resolution is visibly improved as can be seen
for instance from the green signboard. Also the noise level
is significantly suppressed.

VI. CONCLUSION

A method for blind deconvolution and super resolution
from one low-resolution video is introduced in this paper.
The complicated nature of motion fields in real-life videos
make the frame and blur estimations a challenging problem.
To estimate the blur(s), the input frames are first upsampled
using non-uniform interpolation (NUI) SR method assuming
that the blurs are either identical or have slow variations over
time. Then the blurs are determined iteratively from some
enhanced edges in the upsampled frames. After completion of
blur estimation, the reconstructed frames are discarded and a
non-blind iterative SR process is performed to obtain the final
reconstructed frames using the estimated blur(s). A masking
operation is applied during each iteration of the final frame
reconstruction to successively suppress artifacts resulted by
inaccurate motion estimation. Comparison is made with the
state of the art and the superior performance of our proposed
method is confirmed through different experiments.
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